Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,4-Bis(hexyloxy)-2,5-diiodobenzene

Damien Thevenet, ${ }^{\text {a }}$ Reinhard Neier, ${ }^{\text {a }}$ Olha Sereda, ${ }^{\text {b }}$ Antonia Neels ${ }^{\text {b }}$ and Helen Stoeckli-Evans ${ }^{\text {c }}$ *

${ }^{\text {a }}$ Institute of Chemistry, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland, ${ }^{\text {b }}$ XRD Application LAB, Microsystems Technology Division, Swiss Center for Electronics and Microtechnology, rue Jaquet Droz 1, CH-2001 Neuchâtel, Switzerland, and ${ }^{\mathbf{c}}$ Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
Correspondence e-mail: reinhard.neier@unine.ch

Received 19 January 2010; accepted 9 February 2010

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.029 ; w R$ factor $=0.055 ;$ data-to-parameter ratio $=19.4$.

The centrosymmetric title compound, $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{I}_{2} \mathrm{O}_{2}$, crystallized in the monoclinic space group $P 2_{1} / c$ with the alkyl chains having extended all-trans conformations, similar to those in the centrosymmetric bromo analogue [Li et al. (2008). Acta Cryst. E64, o1930] that crystallized in the triclinic space group $P \overline{1}$. The difference between the two structures lies in the orientation of the two alkyl chains with respect to the C (aromatic) - O bond. In the title compound, the $O-\mathrm{C}_{\text {alkyl }}-$ $\mathrm{C}_{\text {alkyl }}-\mathrm{C}_{\text {alkyl }}$ torsion angle is $55.8(5)^{\circ}$, while in the bromo analogue this angle is $-179.1(2)^{\circ}$. In the title compound, the C-atoms of the alkyl chain are almost coplanar [maximum deviation of $0.052(5) \AA$] and this mean plane is inclined to the benzene ring by $50.3(3)^{\circ}$. In the bromo-analogue, these two mean planes are almost coplanar, making a dihedral angle of 4.1 (2) ${ }^{\circ}$. Another difference between the crystal structures of the two compounds is that in the title compound there are no halide . . halide interactions. Instead, symmetry-related molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts, forming a twodimensional network.

Related literature

For use of the title compound in the synthesis of conjugated polymers, see: Van Heyningen et al. (2003); Mayor \& Didschies (2003). For the various syntheses of the title compound, see: Castanet et al. (2002); Van Heyningen et al. (2003); Mayor \& Didschies (2003); Plater et al. (2004). For the synthesis and crystal structure of the bromo analogue, see: Maruyama \& Kawanishi (2002); Li et al. (2008). For bond distances, see Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{I}_{2} \mathrm{O}_{2}$
$M_{r}=530.20$
Monoclinic, $P 2_{b} / n$
$V=996.80(16) \AA^{3}$
$Z=2$
$a=9.4481$ (9) A
Mo K α radiation
$b=7.8455$ (6) A
$\mu=3.16 \mathrm{~mm}^{-1}$
$c=13.457$ (2) \AA
$T=173 \mathrm{~K}$
$\beta=92.148$ (12)
$0.32 \times 0.11 \times 0.06 \mathrm{~mm}$

Data collection
STOE IPDS diffractometer
7660 measured reflections
Absorption correction: multi-scan
MULscanABS in PLATON (Spek, 2009)
$T_{\text {min }}=0.952, T_{\text {max }}=1.042$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029 \quad 101$ parameters
$w R\left(F^{2}\right)=0.055$
$S=0.79$
1962 reflections

H -atom parameters constrained 1962 independent reflections 1216 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.058$
$\Delta \rho_{\text {max }}=0.81 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-1.31 \mathrm{e}^{-3}$

Table 1
$\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $\left(\AA,{ }^{\circ}\right)$.
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C1}^{\mathrm{i}}-\mathrm{C} 3^{\mathrm{i}}$ ring.

$\mathrm{D}-\mathrm{H} \cdots$ centroid	$\mathrm{C}-\mathrm{H}$	$\mathrm{H} \cdots C g$	$\mathrm{D} \cdots C g$	$\mathrm{C}-\mathrm{H} \cdots C g$
$\mathrm{C4}^{\prime}-\mathrm{H}^{\prime} 2 \cdots C g^{\mathrm{ii}}$	0.99	2.74	$3.595(5)$	145.0
Symmetry codes: (i) $-x+1,-y+1,-z ;$	$\left(\right.$ ii) $x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.			

Data collection: EXPOSE in IPDS-I (Stoe \& Cie, 2000); cell refinement: CELL in IPDS-I; data reduction: INTEGRATE in IPDS-I; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2134).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Castanet, A. S., Colobert, F. \& Broutin, P. E. (2002). Tetrahedron Lett. 43, 5047-5048.
Li, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. \& Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Maruyama, S. \& Kawanishi, Y. (2002). J. Mater. Chem. 12, 2245-2249.
Mayor, M. \& Didschies, C. (2003). Angew. Chem. Int. Ed. 42, 3176-3179.

organic compounds

Plater, M. J., Sinclair, J. P., Aiken, S., Gelbrich, T. \& Hursthouse, M. B. (2004). Tetrahedron, 60, 6385-6394
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155

Stoe \& Cie (2000). IPDS-I. Stoe \& Cie GmbH, Darmstadt, Germany.
Van Heyningen, M. K., Verbiest, T., Persoons, A. \& Samyn, C. (2003). PCT Int Appl. WO, 2003003112, A1, 20030109.

supplementary materials

1,4-Bis(hexyloxy)-2,5-diiodobenzene

D. Thevenet, R. Neier, O. Sereda, A. Neels and H. Stoeckli-Evans

Comment

The title compound has been used as a building block for the elaboration of organic-electronic materials, for example as a monomer for the synthesis of conjugated polymers (Van Heyningen et al., 2003; Mayor \& Didschies, 2003). Our interest in this compound lies in the possibility of using it as a spacer-unit in linked materials for the creation of structured, discotic mesophases. The synthesis of the title compound has been reported by various groups (Van Heyningen et al., 2003; Mayor \& Didschies, 2003; Plater et al., 2004). Here it was synthesized by iodination of 1,4-bis(hexyloxy)benzene (Castanet et al., 2002). The crystal structure of the bromo-analogue, synthesized by (Maruyama \& Kawanishi, 2002), has been described by (Li et al., 2008).

The molecular structure of the title compound is illustrated in Fig. 1. Bond lengths are normal (Allen et al., 1987) and similar to those in the bromo-analogue (Li et al., 2008). The molecule possesses C_{i} symmetry with the inversion center situated at the center of the aromatic ring. The alkyl chains adopt a fully extended all-trans conformation. The C-atoms of the alkyl chain are almost coplanar (max. deviation of 0.052 (5) \AA) and this mean plane is inclined to the benzene ring by $50.3(3)^{\circ}$. In the bromo-analogue the alkyl chains also adopt a fully extended all-trans conformation. The alkyl C-atoms are also coplanar [max. deviation of 0.034 (4) \AA] but here lie almost in the same plane as the aromatic ring, with a dihedral angle of $4.1(2)^{\circ}$.

The different comformations of the two compounds are illustrated in Fig. 2. It can be seen that the alkyl chains are orientated differently with respect to the C (aromatic)—O bonds. The $\mathrm{O} 1-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3$ ' torsion angle is $55.8(5)^{\circ}$ in the title compound (Fig. 2b), while in the bromo-analogue this same angle is -179.1 (2) ${ }^{\circ}$ (Fig. 2a). In the crystal structure of the title compound there are no halide \cdots halide interactions, in contrast to the $\mathrm{Br} \cdots \mathrm{Br}$ interactions [3.410 (3) \AA] observed in the bromo-analogue. However, symmetry related molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions leading to the formation of a two-dimensional network (Table 1 and Fig. 3; Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 3^{\mathrm{i}}$ benzene ring).

Experimental

The title compound was synthesized by iodination of 1,4-bis(hexyloxy)benzene (Castanet et al., 2002). To a solution of 1,4-bis(hexyloxy)benzene (0.75 mmol) and N -iodosuccinimide (2.40 mmol) in dry acetonitrile (5.0 ml) was added trifluoroacetic acid (1.50 mmol) at RT. The mixture was heated and stirred at 363 K for 2 h . The reaction mixture was then cooled to RT and concentrated. Diethyl ether (30 ml) was added and the heterogeneous mixture was filtered to remove the white precipitate of succinimide that had formed. The organic layer was then washed with $10 \% \mathrm{NaHSO}_{3}(\mathrm{aq})(3 \times 30 \mathrm{ml})$ and dried over MgSO_{4}. The crude product was purified by column chromatography [silica gel, Petroleum ether : $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1)$] and recrystallisation in methanol. Single crystals of the title compound were grown by slow evaporation of a concentrated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at RT. ${ }^{1} \mathrm{H} \operatorname{NMR}, 400 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 7.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}, 3^{\mathrm{i}}\right), 3.93\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right), 1.80$ (quint, $\mathrm{J}=6.6$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{H}_{2^{\prime}}\right), 1.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 1.35\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{4^{\prime}, 5^{\prime}}\right), 0.91\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right) ;{ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta 152.8\left(\mathrm{C}_{2,2^{\mathrm{i}}}\right)$,
$122.7\left(\mathrm{C}_{3,3}{ }^{\mathrm{i}}\right), 86.3\left(\mathrm{C}_{1,1^{1}}\right)$, $70.3\left(\mathrm{C}_{1^{\prime}}\right), 31.4\left(\mathrm{C}_{5^{\prime}}\right), 29.1\left(\mathrm{C}_{2^{\prime}}\right), 25.7\left(\mathrm{C}_{3^{\prime}}\right), 22.6\left(\mathrm{C}_{4}\right), 14.0\left(\mathrm{C}_{6^{\prime}}\right)$; MS $(\mathrm{EI}):[\mathrm{M}]^{+}=529.95$. The same numbering scheme has been used for the crystal structure.

Refinement

The H-atoms could all be located in difference electron-density maps. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.98-0.99 \AA$, with $U_{\text {iso }}(\mathrm{H})=\mathrm{k} \times U_{\text {eq }}$ (parent C-atom), where $\mathrm{k}=1.2$ for H -aromatic and H -methylene, and 1.5 for H -methyl.

Figures

Fig. 1. A view of the molecular structure of the title compound, with displacement ellipoids drawn at the 50% probabilty level. Atoms labelled ${ }^{i}$ are related to the other atoms by the symmetry operation $-x+1,-y+1,-z$.

Fig. 2. A view of the different molecular conformations in (a) the bromo-analogue (Li et al., 2008), and (b) the title compound. The H -atoms have been omitted for clarity.

1,4-Bis(hexyloxy)-2,5-diiodobenzene

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{I}_{2} \mathrm{O}_{2}$

$$
F(000)=516
$$

$M_{r}=530.20$
$D_{\mathrm{x}}=1.767 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=9.4481$ (9) \AA
$b=7.8455$ (6) \AA
$c=13.457(2) \AA$
$\beta=92.148(12)^{\circ}$
$V=996.80(16) \AA^{3}$
Fig. 3. A view along the a-axis of the crystal packing in the title compound. The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are illustrated by the $\mathrm{H} \cdots \mathrm{C}$ contacts [$\mathrm{H} 4{ }^{\prime} 2 \cdots \mathrm{C}$-atoms of the benzene ring] of 2.9-3.2 \AA, drawn as dotted cyan lines. H -atoms not involved in the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions have been omitted for clarity; symmetry code (ii) $-\mathrm{x}+3 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$.
$Z=2$

Data collection

STOE IPDS
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ rotation scans
Absorption correction: multi-scan
MULscanABS in PLATON (Spek, 2009)
$T_{\text {min }}=0.952, T_{\text {max }}=1.042$
7660 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.055$
$S=0.79$
1962 reflections
101 parameters
0 restraints

1962 independent reflections
1216 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=26.1^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-11 \rightarrow 11$
$k=-9 \rightarrow 9$
$l=-16 \rightarrow 16$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0227 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.81$ e \AA^{-3}
$\Delta \rho_{\min }=-1.31 \mathrm{e} \AA^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	$0.82998(3)$	$0.69287(4)$	$0.01561(3)$	$0.0307(1)$
O1	$0.7295(3)$	$0.3497(4)$	$0.0975(2)$	$0.0276(10)$
C1	$0.6122(4)$	$0.4192(6)$	$0.0508(3)$	$0.0215(14)$
C1 $^{\prime}$	$0.7158(4)$	$0.1961(7)$	$0.1533(3)$	$0.0279(16)$
C2	$0.6307(4)$	$0.5768(6)$	$0.0054(3)$	$0.0214(16)$
C2 $^{\prime}$	$0.8638(5)$	$0.1475(6)$	$0.1902(4)$	$0.0286(16)$
C3	$0.5180(4)$	$0.6593(6)$	$-0.0459(3)$	$0.0170(14)$
C3 $^{\prime}$	$0.9402(4)$	$0.2857(6)$	$0.2498(3)$	$0.0242(16)$

supplementary materials

C4'	$1.0897(5)$	$0.2350(6)$	$0.2818(3)$	$0.0261(16)$
C5'	$1.1699(5)$	$0.3737(6)$	$0.3398(4)$	$0.0332(17)$
C6' $^{\prime}$	$1.3227(5)$	$0.3225(8)$	$0.3657(4)$	$0.0373(16)$
H1'1 $^{\text {H }}$	0.67420	0.10460	0.11080	0.0340^{*}
H1'2	0.65390	0.21470	0.21010	0.0340^{*}
H3	0.53150	0.76690	-0.07650	0.0210^{*}
H2'1	0.92060	0.11840	0.13220	0.0340^{*}
H2'2	0.85780	0.04420	0.23210	0.0340^{*}
H3'1	0.94350	0.39070	0.20920	0.0290^{*}
H3'2	0.88620	0.31150	0.30960	0.0290^{*}
H4'1	1.14270	0.20610	0.22190	0.0310^{*}
H4'2	1.08590	0.13140	0.32350	0.0310^{*}
H5'1	1.12050	0.39790	0.40180	0.0400^{*}
H5'2	1.16960	0.47950	0.29970	0.0400^{*}
H6'1	1.32350	0.21600	0.40380	0.0560^{*}
H6'2	1.36880	0.41260	0.40570	0.0560^{*}
H6'3	1.37380	0.30610	0.30440	0.0560^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0231(1)$	$0.0311(2)$	$0.0374(2)$	$-0.0054(2)$	$-0.0051(1)$	$0.0055(2)$
O1	$0.0202(14)$	$0.026(2)$	$0.0358(19)$	$-0.0003(12)$	$-0.0093(13)$	$0.0145(15)$
C1	$0.019(2)$	$0.021(3)$	$0.024(2)$	$0.0025(18)$	$-0.0054(18)$	$-0.001(2)$
C1'	$0.028(2)$	$0.021(3)$	$0.034(3)$	$-0.003(2)$	$-0.0063(19)$	$0.007(3)$
C2	$0.021(2)$	$0.023(3)$	$0.020(3)$	$-0.0020(18)$	$-0.0013(17)$	$-0.003(2)$
C2'	$0.029(2)$	$0.025(3)$	$0.031(3)$	$0.001(2)$	$-0.008(2)$	$0.005(2)$
C3	$0.0108(19)$	$0.022(3)$	$0.018(2)$	$-0.0001(18)$	$-0.0003(16)$	$-0.001(2)$
C3'	$0.022(2)$	$0.023(3)$	$0.027(3)$	$0.002(2)$	$-0.0054(18)$	$0.004(2)$
C4 $^{\prime}$	$0.028(2)$	$0.026(3)$	$0.024(3)$	$0.0020(18)$	$-0.004(2)$	$0.006(2)$
C5' $^{\prime}$	$0.031(3)$	$0.025(3)$	$0.043(3)$	$-0.001(2)$	$-0.007(2)$	$0.008(2)$
C6 $^{\prime}$	$0.027(2)$	$0.039(3)$	$0.045(3)$	$-0.006(3)$	$-0.010(2)$	$0.002(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

I1-C2	2.091 (4)	C2'-H2'1	0.9900
O1-C1	1.367 (5)	C2'-H2'2	0.9900
O1-C1'	1.428 (6)	C3-H3	0.9500
C1-C2	1.393 (6)	C3'-H3'1	0.9900
C1-C3 ${ }^{\text {i }}$	1.375 (6)	C3'-H3'2	0.9900
C1'-C2'	1.515 (6)	C4'-H4'1	0.9900
C2-C3	1.405 (6)	C4'- $\mathbf{H}^{\prime}{ }^{\prime} 2$	0.9900
C2'-C3'	1.515 (7)	C5'-H5'1	0.9900
C3'-C4'	1.514 (6)	C5'-H5'2	0.9900
C4'-C5'	1.524 (7)	C6'-H6' 1	0.9800
C5'-C6'	1.526 (7)	C6'- ${ }^{\prime} 6^{\prime} 2$	0.9800
C1'-H1'1	0.9900	C6'-H6'3	0.9800

sup-4

supplementary materials

$\mathrm{I} 1 \cdots \mathrm{O} 1$	3.073 (3)	H2'1 \cdots H ${ }^{\prime} 1$	2.4800
$\mathrm{I} 1 \cdots \mathrm{C} 6^{\text {ii }}$	3.736 (5)	H2'2 ${ }^{\text {\% }}$ H4'2	2.5400
I1 $\cdots \mathrm{H} 32^{\text {iii }}$	3.3100	$\mathrm{H} 22^{\prime} \cdots \mathrm{O} 1^{\text {vii }}$	2.9000
$\mathrm{I} 1 \cdots \mathrm{H} 41^{\text {iv }}$	3.3100	$\mathrm{H} 22^{\prime} \cdots \mathrm{C} 1^{\text {vii }}$	3.0800
O1 \cdots I1	3.073 (3)	H3'1 \cdots O1	2.4900
O1 $\cdots{ }^{\text {H }} 1$	2.4900	H3'1 \cdots H5'2	2.5200
$\mathrm{O} 1 \cdots \mathrm{H} 22^{\text {iii }}$	2.9000	H3'2 ${ }^{\prime}{ }^{\text {H }} 5^{\prime} 1$	2.5900
$\mathrm{O} 1 \cdots \mathrm{H} 6^{1}{ }^{\mathrm{v}}$	2.8300	H3'2 \cdots I1 ${ }^{\text {vii }}$	3.3100
C6'...11 ${ }^{\text {vi }}$	3.736 (5)	H4'1 \cdots H2'1	2.4800
$\mathrm{C} 1 \cdots \mathrm{H} 42^{\text {iii }}$	3.0600	H4'1 $\cdots{ }^{\prime}{ }^{\prime}{ }^{\prime} 3$	2.5400
$\mathrm{C} 1 \cdots \mathrm{H} 42^{\text {v }}$	3.0900	H4'1 $\cdots{ }^{\prime} 5^{\prime} 2^{\text {vi }}$	2.5400
C1 $\cdots{ }^{2} 2^{\text {iii }}$	3.0800	$\mathrm{H} 411 \cdots \mathrm{l} 1^{\text {iv }}$	3.3100
$\mathrm{C} 1 \cdots \mathrm{H} 61^{\text {v }}$	3.0500	H4'2 $\cdots{ }^{\prime}{ }^{\prime}{ }^{\prime} 2$	2.5400
$\mathrm{C} 1{ }^{\prime} \cdots \mathrm{H} 3^{\text {i }}$	2.5400	H4'2 ${ }^{\text {\% }}{ }^{\text {H }}{ }^{\prime} 1$	2.5400
$\mathrm{C} 2 \cdots \mathrm{H} 42^{\text {v }}$	2.9600	$\mathrm{H} 4{ }^{2} \cdots{ }^{\prime} \mathrm{Cl}^{\text {vii }}$	3.0600
C3 \cdots H5' $1^{\text {iii }}$	3.0300	$\mathrm{H} 42^{\prime} \cdots \mathrm{C} 1^{\text {viii }}$	3.0900
C3 $\cdots{ }^{\text {c }}$ ' $2^{\text {i }}$	2.8700	H4'2 \cdots C2 $2^{\text {viii }}$	2.9600
$\mathrm{C} 3 \cdots \mathrm{H} 42^{\text {v }}$	2.9600	H4'2 ${ }^{\text {c }} \mathrm{C}^{\text {viii }}$	2.9600
	2.7200	H5' $1 \cdots \mathrm{H} 3^{\prime} 2$	2.5900
$\mathrm{H} 11^{\prime} \cdots \mathrm{C} 3^{\text {i }}$	2.7200	$\mathrm{H} 511 \cdots \mathrm{C} 3^{\text {vii }}$	3.0300
$\mathrm{H} 1^{\prime} 1 \cdots \mathrm{H} 3^{\text {i }}$	2.2200	H5'2 \cdots H3'1	2.5200
$\mathrm{H} 122 \cdots \mathrm{C} 3^{\text {i }}$	2.8700	H5'2 $\cdots \mathrm{H} 41^{\text {ii }}$	2.5400
H1'2 $\cdots{ }^{\text {a }}{ }^{\text {i }}$	2.4700	H6' ${ }^{\prime}$ - ${ }^{\text {H }}$ ' 2	2.5400
$\mathrm{H} 3 \cdots \mathrm{C} 1^{\text {i }}$	2.5400	H6' $1 \cdots \mathrm{O} 1^{\text {viii }}$	2.8300
H3 $\cdots{ }^{\text {ch }}$ '1 ${ }^{\text {i }}$	2.2200	H6' ${ }^{\prime}$ C $1^{\text {viii }}$	3.0500
H3 $\cdots{ }^{\text {H }}{ }^{\prime} 2^{\text {i }}$	2.4700	$\mathrm{H}^{\prime} 3 \cdots \mathrm{H}{ }^{\prime} 1$	2.5400
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 1^{\prime}$	119.4 (3)	C2-C3-H3	121.00
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.3 (3)	$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{H} 3$	121.00
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3^{\text {i }}$	123.5 (4)	C2'-C3'-H3'1	109.00
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3^{\text {i }}$	120.2 (4)	C2'-C3'-H3'2	109.00
O1-C1'- C^{\prime}	106.5 (3)	C4'- \mathbf{C}^{\prime} - $-\mathrm{H} 3^{\prime} 1$	109.00
I1-C2-C1	119.0 (3)	C4'- ${ }^{\prime} 3^{\prime}-\mathrm{H} 3^{\prime} 2$	109.00
I1-C2-C3	119.7 (3)	H3'1-C3'-H3'2	108.00
C1-C2-C3	121.3 (4)	C3'-C4'-H4'1	109.00
C1'-C2'-C3'	114.1 (4)	C3'-C4'- \mathbf{H}^{\prime} '2	109.00
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2$	118.5 (4)	C5'-C4'- ${ }^{\prime} 4^{\prime} 1$	109.00
C2'- C^{\prime} - $\mathrm{C} 4^{\prime}$	112.5 (4)	C5'-C4'-H4'2	109.00
C3'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 5^{\prime}$	113.5 (4)	H4'1-C4'- ${ }^{\prime} 4^{\prime} 2$	108.00
C4'-C5'- ${ }^{\text {c }}{ }^{\prime}$	112.1 (4)	C4'- ${ }^{\text {C }}{ }^{\prime}$ - ${ }^{\text {H }}{ }^{\prime} 1$	109.00
O1-C1'-H1'1	110.00	C4'- ${ }^{\text {C }}{ }^{\prime}$ - $\mathrm{H}^{\prime}{ }^{\prime} 2$	109.00
O1-C1'-H1'2	110.00	C6'-C5'- ${ }^{\prime} 5^{\prime} 1$	109.00
C2'-C1'-H1'1	110.00	C6'-C5'- ${ }^{\prime} 5^{\prime} 2$	109.00
C2'- $\mathrm{Cl}^{\prime}-\mathrm{H} 1{ }^{\prime} 2$	110.00	H5'1-C5'-H5'2	108.00

supplementary materials

$\mathrm{H} 1{ }^{\prime} 1-\mathrm{C} 1$ - ${ }^{\text {H1'2 }}$	109.00	C5'-C6'-H6'	109.00
$\mathrm{C} 1{ }^{\prime}-\mathrm{C} 2{ }^{\prime}-\mathrm{H} 2^{\prime} 1$	109.00	C5'-C6'-H6'2	109.00
C1'- $\mathbf{C 2}^{\prime}$ - $-\mathrm{H} 2^{\prime} 2$	109.00	C5'- $\mathbf{C 6}^{\prime}$ - $\mathrm{H} 6^{\prime} 3$	110.00
C3'- $\mathbf{C 2}^{\prime}-\mathrm{H} 2^{\prime} 1$	109.00	H6'1-C6'- ${ }^{\text {H }}{ }^{\prime} 2$	109.00
C3'- ${ }^{\prime} 2^{\prime}-\mathrm{H} 2^{\prime} 2$	109.00	H6' 1 - C^{\prime} - $\mathrm{H}^{\prime} \mathbf{'}^{3}$	110.00
H2'1-C2'-H2'2	108.00	H6'2-C6'-H6'3	110.00
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	174.3 (4)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2^{\mathrm{i}}$	-0.2 (6)
$\mathrm{C} 1{ }^{\prime}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3^{\text {i }}$	-6.7 (6)	$\mathrm{O} 1-\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	55.8 (5)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}$	176.8 (4)	$\mathrm{I} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	-179.5 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{I} 1$	-1.5 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	-0.2 (6)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.2 (4)	C1'-C2'-C3'- ${ }^{\prime} 4^{\prime}$	-177.7 (4)
$\mathrm{C} 3{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{I} 1$	179.5 (3)	C2'-C3'- $\mathbf{C l}^{\prime}-\mathrm{C} 5^{\prime}$	178.6 (4)
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.2 (6)	C3'-C4'- \mathbf{C}^{\prime} '- C^{\prime}	-176.7 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}-\mathrm{C} 2^{\mathrm{i}}$	-179.1 (4)		

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+5 / 2, y+1 / 2,-z+1 / 2$; (iii) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (iv) $-x+2,-y+1,-z$; (v) $x-1 / 2,-y+1 / 2$, $z-1 / 2$; (vi) $-x+5 / 2, y-1 / 2,-z+1 / 2$; (vii) $-x+3 / 2, y-1 / 2,-z+1 / 2$; (viii) $x+1 / 2,-y+1 / 2, z+1 / 2$.

Table 1

$C-H \cdots \pi$ interactions ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 1^{i}-\mathrm{C} 3^{\mathrm{i}}$ ring.
D-H \cdots centroid
C-H
$\mathrm{H}^{\cdots} \mathrm{Cg}$
D $\cdots \mathrm{Cg}$
$\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg}$
C4'—H4'2 $\cdots \mathrm{Cg}^{\text {ii }}$
0.99
2.74
3.595 (5)
145.0

Symmetry codes: (i) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}$; (ii) $-\mathrm{x}+3 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

(a)

(b)

Fig. 3

